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Abstract

This report describes research work which was funded under grant number AFOSR-
90-00199 during the period February 1st 1990 to May 31st 1992. Our work has focused
on developing information-theoretic and probabilistic models for neural network com-
putation. This theoretical basis is then used to develop novel hybrid network architec-
tures, which combine techniques from the fields of statistics and artificial intelligence
with neural approaches. The report describes a number of significant results including
identification of the general class of energy functions which lead to proper probability
estimation, a new algorithm which builds hybrid rule-based network models from data,
Markov random field theory and algorithms for constructing network models from large
databases, new results on sparse Markov models, a new hybrid unsupervised/supervised
learning algorithm with applications to computer vision problems, a novel recurrent net-
work structure, and prototype VLSI hardware implementations of these ideas. A Total
of 30 technical papers have resulted from this grant.
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1 Introduction

The general objective of this work is to develop information-theoretic and probabilistic mod-
els for neural network algorithms and architectures. The practical goal of the research is to
use the theoretical models as a basis for developing hybrid algorithms which combine ideas
from connectionism, artificial intelligence, and information theory, with particular emphasis
on learning problems. A primary motivating factor in our work is the belief that hybrid
architectures which are based on sound probabilistic principles, explicit knowledge repre-
sentation, and parallel network models offer significant advantages over more conventional
approaches to pattern recognition and machine learning.

The broad foundations of the work can be summarized as follows:

1. General information-theoretic criteria for evaluation and comparison of neural network
models: in particular, better theoretical understanding of the roles of goodness-of-fit
and complexity for classification problems. The work on rule-based models (Section
2) is a good example of this work.

2. The role of probability in improving our understanding of neural network learning
and behaviour - an example of this approach is our general result on the class of
objective functions which are necessary for a network to converge to accurate posterior
probability estimates (Section 3). In addition, in Section 4 we discuss our work on
linking local basis function networks with non-parametric kernel density estimation.

3. The use of explicit knowledge representation in neural network models - the hybrid
rule-based network models of Section 2 and the fuzzy networks described in Section
7 describe in more detail the application of this idea.

4. Theory and algorithms for automatically determining network architectures from data,
e.g., the Markov random field models described in Section 3

5. Hybrid solutions to difficult pattern recognition problems which integrate both con-
ventional techniques and neural models to significantly improve performance. For
example, Hidden Markov models plus neural networks for fault detection (Section
4), and the use of unsupervised learning, Gabor filters and rule-based networks for
texture discrimination (Section 5).

6. Experimentation and validation of the theory and models on real-world problems:
medical database applications in Section 1, a NASA fault diagnosis task in Section 4,
segmentation of remotely-sensed images in Section 5, and VLSI hardware implemen-
tation of particular network models (Section 8).
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2 Hybrid Probabilistic Rule-based Neural Networks

2.1 Introduction

Our work in this area has focused on developing networks which use an explicit rule-based
representation to represent the knowledge in a network. In particular we use probabilistic
rules as the main basis for our models, extending our earlier results in machine learning to
the connectionist paradigm. Our rule-based models can be considered to be direct descen-
dants of the early work of Uttley and also Minsky and Selfridge in the late 1950's and early
1960's when they tried to build "conditional probability computers" using either random
conjuncts or an exponential number of units in the hidden layers. We have developed tech-
niques which allow the automatic synthesis from data of a network model, where the number
of hidden units or rules are traded off as a function of goodness-of-fit and complexity [1].
The primary feature of our model is the use of explicit knowledge representation whereby
the user can easily comprehend the learned model and receive explanations of classification
decisions - in comparison, models such as backpropagation-trained networks yield very
little insight into the underlying decision process, limiting their acceptance in real-world
applications.

We utilize an information theoretic approach to learning a model of the domain knowl-
edge from examples. This model takes the form of a set of probabilistic conjunctive rules
between discrete input evidence variables and output class variables. These rules are then
mapped onto the weights and nodes of a feed forward neural network resulting in a direct-
ly specified architecture (Figure 1). The network acts a parallel Bayesian classifier which
produces posterior probability estimates of the class variables.

Y,

Y2

Y2 Y2

Y ~& nhieweights w.

IWpu Attributes Conjuncive Rules Ou4"u Cks

Figure 1: Architecture of the Rule-Based Classifier.

2.2 Models for Rule-based Neural Networks

We consider the problem of building a classifier that relates a set of K discrete feature
variables (or attributes) comprising the set Y = {Y 1,..., YKI to a discrete class variable X.
Each attribute variable takes values in the alphabet {yi,... ,y, 1 }, 1 < I < K, where ml
is the cardinality of the Ith attribute alphabet. The class variable X takes discrete values
from the set {x 1,...,zx}, where m is the cardinality of the class. We also assume that
we are given an initial labeled training set of N examples where each example is of the
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J-Measure Rule Strength wij
0.297 IF cell size uniformity 1 THEN diagnosis benign 5.9

AND mitoses 1
0.289 IF bare nuclei 1 THEN diagnosis benign 6.2

AND normal nucleoli 1
0.271 IF epithelial cell size 2 THEN diagnosis benign 8.0

AND bare nuclei 1
0.231 IF bare nuclei 10 THEN diagnosis malignant -4.4
0.145 IF clump thickness 10 THEN diagnosis malignant -5.7
0.111 IF cell size uniformity 10 THEN diagnosis malignant -5.3
0.103 IF normal nucleoli 10 THEN diagnosis malignant -5.2
0.085 IF marginal adhesion 10 THEN diagnosis malignant -4.2
0.057 IF cell size uniformity 5 THEN diagnosis malignant -4.5
0.056 IF epithelial cell size 10 THEN diagnosis malignant -3.8
0.045 IF bland chromatin 8 THEN diagnosis malignant -4.2

Table 1: Medical Database - Rules

form {Y 1 = yf,..., YK = yk, X = zi}. Let si be an arbitrary conjunction of left-hand side
(LHS) or attribute terms, e.g., si = yi.yb. The supervised learning problem is to learn a
classifier which when presented with future unseen attribute vectors (which may be either
partial or complete) will estimate the posterior probability of each class.

In previous work we developed a measure of the utility or goodness of a probabilistic
rule. In a Hebbian sense such a rule might be considered good if the occurrence of the
LHS conjunction of variables is strongly correlated with the RHS. Alternatively, such a rule
might be considered good if the transition probability p is near unity. For example, a rule
with p = 1 indicates a deterministic rule in which the occurrence of sj implies X = Zi with
certainty. Both aspects can be taken into account by considering that the goodness of such
a rule can be measured by the average bits of information that the occurrence of the LHS
sj gives about the RHS X = zi. This measure, called the J-measure, can be defined as:

J(X;s3 ) = + ( I(1 -pAZI)

We have developed algorithms which use the J-measure to search a given training data
set for informative rules. Classification of a new feature vector, given a set of rules, can be
achieved by use of appropriate conditional independence assumptions as described in [1].
However, without constraining the search, there is a high likelihood that the rules will overfit
the data. We have developed the following strategy: an initially large network of rules is
grown in the first stage, which is then "pruned" back to a parsimonious network model
during a second classifier construction stage. The quality of a given network is evaluated
by using Rissanen's Minimum Description Length (MDL) criterion which quantitatively
trades-off the goodness-of-fit (in terms of how many bits it takes to describe the data given
the model) versus the complexity of the model. The final model is chosen by finding a local
minimum of the MDL criterion in the search space.
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2.3 Experimental Results

The algorithm is particularly good at finding very simple rule-networks which generalize
well to new data - typically a network with only 5 or 10 rules is required for many well-
known datasets. In [1] we demonstrate the application of this method to two widely-quoted
datasets: the University of Wisconsin cancer database, and the protein secondary structure
prediction problem. In each case, equivalent or better results than those previously reported
in the literature were obtained, but using quite simple and knowledge-explicit models. Table
I shows the actual rules in the network for the cancer problem while Figure 2 shows the
final network architecture.

Figure 2: Medical Database - Network.

In many practical classification applications there is a strong preference on the part of
the user to use a model which can in some sense justify its conclusion -- the rule-based
network can do this directly, not only providing an indication of which particular attributes
were relevant to a given decision, but also providing the relative weight attached to each
input. Furthermore, because the model is based on probabilistic rules it produces posterior
probability estimates of the class labels directly, thus enabling a measure of confidence in
the network's decision. As network models will be increasingly used as components in larger
decision systems, the ability to produce coherent probabilistic outputs is critical.

2.4 Future Work and Applications

Because of the nature of the rule representation, the rule-based network model is most
useful for dealing with discrete data. However, we are currently developing methods to
handle continuous data. Other ongoing work involves the important problem of providing
the ability to "pre-program" a rule-based network (this allows the advance specification of
prior knowledge, and can considerably speed-up learning or equivalently reduce the amount
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of data required to learn a given task). There are many potential applications of the general
model, in particular, problems where the user requires that the model provide a justification
of how it arrived at a particular decision, for example, medical diagnosis systems and on-line
monitoring of critical industrial, nuclear, or chemical processes. In Section 5 we discuss the
application of the method to texture segmentation in image analysis, while in Section 7
the model provides the basis for learning fuzzy control strategies. We have also found that
the method is quite useful in the early stages of any pattern recognition problem, since it
provides useful feedback on which attributes are most relevant for discrimination as well as
giving a general idea regarding the quality of the attributes relative to the given problem.
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3 Probability Estimation in Neural Networks

3.1 Loss Functions for Posterior Probability Estimation

3.1.1 Introduction

We have proven a powerful result concerning the probability estimation properties of arbi-
trary objective functions used for training neural networks [2, 15, 17]. The result describes
a unique class of functions which train the network so that its outputs provably correspond
to probabilities - we describe such functions as being P-admissible. We show that the
commonly used mean-squared error function is in a sense (in terms of description) the
simplest member of the general class of P-admissible objective functions. In addition, the
cross-entropy training metric, also widely used, and which can be derived from maximum
likelihood arguments, is the only other easy-to-specify member of this general class. Thus
the two best known objective functions are implicitly linked in a manner not previously
known. The results also tells us that certain candidate objective functions which have been
proposed in the literature (such as various L aorms), are not in fact P-admissible probabil-
ity estimators, and, as such, should not be used if the output activations are required to be
interpretable as probabilities.

Backpropagation was originally derived in the context of minimizing a mean-squared
error (MSE) objective function. More recently there has been interest in objective functions
that provide accurate class probability estimates. The motivation of the work described here
is to improve our understanding of systems which train iteratively to estimate probabilities.
We derive necessary and sufficient conditions on the required form of an objective function
to provide probability estimates. The results we present are discussed in the context of
feed forward neural network models. The results, however, are dependent on the training
scheme, not on the actual modeling scheme (such as a neural network, a decision tree, or a
truth table).

3.1.2 Problem statement

We have a set of N samples where each sample consists of a vector of feature measurements
and a class label (say there are K features and m possible class labels, m > 2). Define
the class to be a discrete m-ary variable C, and let us refer to the K-dimensional feature
variable as x. From the training data we seek to infer a classifier, where a classifier takes as
input an unlabeled feature vector and produces as output posterior probability estimates of
the classes, i.e., an estimate of the conditional probability of each class given a particular
feature value x, Acj.), 1 < i < m. We will find the following notation convenient: for each
of the i training samples let ci(j) be the true class, i.e., the given class label.

We will refer to the estimated network parameters (weights and biases) collectively by
0. The most widely used error function is the Mean-Squared Error (MSE) function defined
as

Nm
EMSE = E F(ti(k) - oi(k)) 2  (2)

ill k=1

where ti(k) is the "target" value for node k and oi(k) is the network's output at node k
(oi(k) is actually a function of the input features 1.(i) and the network parameters, but we
ignore this dependence for notational convenience). Note that for labeled class data that
it(j) = 1,t,(k) = O,k j,l < k < m.



Two other objective functions have been proposed in the literature. The so-called cross-
entropy (CE) measure is defined as

ECE N = =k) - (k) ti(k)log -(-ti(k)log (3)

This definition is motivated by a desire to minimize the cross-entropy between the target
distribution and the network estimate of the distribution for each class. In effect, it is a
sum of binary cross-entropy measures for each node, rather than a true cross-entropy.

Consider now objective functions of the form

N in
E = E E L(oi(k), t(k)) (4)

i=1 k=1

The function L(y, t) is said to minimize to a probability when the its minimum is achieved
when y is equal to ?, the average value of t taken over the training samples. The problem ad-
dressed in this work is to determine the necessary and sufficient conditions for minimization
to a probability.

3.1.3 Results

It is found that minimization to a probability requires

L(y,t) = J h'(y) • 1 - dy + C(t) (5)
J Y

h'(y)>0 for 0<y< 1 (6)

where h(y) is any smooth function which satisfies (6). If the symmetry condition L(y,t) -
L(1 - y, 1 - t) is imposed then h(y) must also satisfy (7):

1- y _h'(1 -y)(7
y h'(y)

Equation (5) ensures the existence of a local extremum at y =7, while (6) forces this to be
the unique minimum. It follows from (7) that at least one of the following cases must be
true:

h'(y) has a zero at y = 0 o h'(y) has a pole at y = 1
The simplest functions satisfying the above restrictions are:

h'(y) = y =€MSE (8)
1

h'(y) = - CE (9)

We have extended these results to the pract' "al case where the network does not possess
sufficient representation power to model the input/output probability dependence exactly
[2]. In this case we are interested in the approzination capabilities of the network. We have
shown that all of the above results still hold in the approximation sense. The minimum
achieved by the network will in fact be the best approximation to the desired probabilities,
where "best" is measured in terms of the natural metric of the ofjective function itself, i.e.,
the squared error objective function minimises the mean-squared error distance between the
network output and the desired minimum, and the cross-entropy function provides an op-
timal approximation as measured in terms of information distance between two probability
distributions.
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3.1.4 Applications

The results further support the use of the Cross Entropy and Mean Squared Error objective

functions. The choice of a particular objective function depends on the individual estimation
problem. Each of the MSE and CE loss functions for probability estimation have advantages
and drawbacks in their own right. Using these equations one can choose CE, MSE, or a
more complicated loss function appropriate to a specific task while insuring the property of

minimization to a probability.

3.2 Markov Random Field Networks for Database Modeling

3.2.1 Introduction and Background

We have developed a novel algorithm for creating a neural network from a discrete database
which produces accurate probability estimates as outputs [29]. The network implements a

Gibbs probability distribution model of the training database. A database is viewed as a
collection of independent samples from a probability distribution. Statistics are collected

from the database and then a model is fitted to these statistics. The fitted model is a
probability distribution. Samples from this distribution should, on average, have statistics
identical to those collected from the original database. The problem can be separated into
two parts: one is the choice of the statistics of interest. The second is the method of

choosing a model which is consistent with these statistics. Under reasonable assumptions,
the optimal solution to the second problem is the method of Maximum Entropy. For a broad
class of statistics, the Maximum Entropy solution is a Gibbs probability distribution. In this

section , the background and theoretical result of a transform from joint statistics to a Gibbs
energy (or network weight) representation is presented. We then outline the experimental

test results of an efficient algorithm implementing this transform without using gradient
descent iteration.

Define a set T to be the set of attributes (or fields) in a database. For a particular
entry (or record) of the database, define the associated set of attributes-values to be the
configuration w of the attributes. The attribute-values associated with a subset b C T is

called a sub configuration wb. Using this set notation the Gibbs probability distribution may
be defined:

p =w) = Z-." ev(w) (10)

where

V(w) = Jb() (11)
bcT

The function V is called the energy. The function Jb, called the potential function, defines a
real value for every subconfiguration of the set b. Z is the normalizing constant that makes
the sum of probabilities of all configurations equal to unity.

Prior work in the neural network literature on producing Gibbs distribution models
(such as the Boltzmann Machine) have primarily used second order potentials - Gibbs
distributions with Jb = 0 if b is a set of more than two attributes, IbI > 2. By adding new

attributes, second order potentials can be used to model increasingly complex distributions.

The work presented in this paper, in contrast, uses higher order potentials to model complex
pr, -ibility distributions.
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The principal of Inclusion-Exclusion from set theory states that the following two equa-
tions are equivalent:

g(A) = E f(b) (12)
bCA

f(A) = -(-I)IA-bl g(b). (13)
bCA

The method of inverting an equation from the form of (12) into one in the form of (13) is
a special case of Mobius Inversion. Clifford-Hammersley used this relation to invert formula
(11):

JA(W) = Z(_.)IA1 V4(W) (14)
bcA

Define the probability of a subconfiguration p(wb) to be the probability that the attributes
in set b take on the values defined in the configuration w. Using (10) to describe the
probability distribution of subconfigurations, equation (14) can be written:

JA(W) = 7 (--1)IA-bl In( P(wb) ) (15)
bCA

Database A C R Train Test Trials EM-Rate Compare
House Voting 16 2 435 335 100 50 95.32% 95%

Letter Recognition 26 26 20000 16000 4000 3 88.93% 80%
Iris 4 3 150 149 1 100 97.1% 97.1%

Breast Cancer 9 2 369 200 169 100 95.7% 93.7%
Monks 3 6 2 432 122 432 1 97.5% 68-100%

A = Attribute count in the database, excluding the class attribute
C = Class count
R = Record count

Train = Number of records used to create the energy model for a single trial
Test = Number of records tested in a single trial

Trials = Number of independent train-test trials used
EM-Rate = Energy Model classification rate
Compare = Baseline classification result of other classification methods

Table 2: Summary of Energy Model Classification Results

3.2.2 Results

Equation (15) provides a technique for modeling distributions by energy functions rather
than directly through the observable joint statistics of sets of attributes. If the model
is truncated by setting high order potentials to zero, then the energy model becomes an
estimate of the model obtained by collecting the joint statistics, rather than an exact e-
quivalent. Our method of probability estimation is to first collect empirical frequencies
of patterns (subconfigurations) from the database. An efficient hash table implementa-
tion of the algorithm (for a serial computer) collects the statistics without doing searches
or multiple passes through the training dataset. Second, interpreting these frequencies as
probabilities, we convert each pattern frequency to a potential using a normalized version of
equation (14). Alternately, a distributed neural network implementation can use a modified

12



hebbian rule to push the weights toward the desired potential value. We assume patterns
with unknown or uncalculated frequencies have zero potential. Finally, we calculate the
probability of any new pattern not in the training set using the network implementation of
equations (10) and (11).

One way to validate the performance of a probability model is to test its performance
as a classifier. The probability model is used as a classifier by calculating the probabilities
of each unknown class value together with the known attribute values. The most probable
combination is then chosen as the predicted class. Used as a classifier the Gibbs model tied
or outperformed published results on a variety of databases. Table 1 outlines these results
on three datasets taken from the UC Irvine archive.

3.2.3 Conclusion

A new method of extracting a Gibbs probability model from a database has been outlined.
The approach uses the principal of Inclusion-Exclusion to invert a set of collected statistics
into a set of potentials for a Gibbs energy model. A hash table implementation is used
to efficiently process database records in order to collect the most important potentials, or
weights, which can be stored in the available memory. Although the model is designed to
give accurate probability estimates rather than simply class labels, the model in practice
works well as a classifier on a variety of databases.

13



3.3 Theoretical Results on Minimum Description Length Models

3.3.1 Introduction

We have also investigated the trade-off between complexity and goodness-of-fit as it ap-
plies to neural network architecture selection. By looking at the posterior probability of a
particular network model given a set of data, Bayesian and Minimum Description Length
techniques reduce to two types of terms: a likelihood or goodness-of-fit term (the stan-
dard squared-error or cross-entropy objective function term) which measures how well the
data fits the model, plus a second complexity penalty term which corresponds to a prior
probability or description length of the model itself. The purpose of the second term is to
quantitatively enforce Occam's razor - a preference for simpler theories or models for the
data because they have a better chance of extrapolating well to new data.

3.3.2 Results

One of the problems with searching over multiple possible models is the computational
complexity since there are so many possible models and parameters to choose from. We
have developed a theory of admissible models in the context of MDL [4, 19]. This theory
defines an admissible model to be one such that its complexity does not exceed that of the
data itself. By using information-theoretic bounds, the boundaries of this class of models fQ
can be calculated a priori with very little information about the data - even just knowing
the number of sample points and the number of classes can lead to useful bounds. The
practical consequence of this result is that the algorithm can thus restrict its search to
within the boundaries of 12. Not only does this reduce the search by orders of magnitude, it
also reduces the probability that a poor local minimum will be found during the search by
eliminating a large part of the search space at the start. We have applied the theory to some
published results in the literature on Markov models and decision trees [4], and showed that
the chosen model space r is often orders of magnitude larger than the necessary model space
Q. The bounds on Q2 can be applied at any point of the learning algorithm leading to general
branch-and-bound strategies for complexity-based learning algorithms. The theory has also
been successfully demonstrated on the problem of finding the architecture of rule-based
networks described earlier [19].

14



4 Probability Density Estimation and Neural Networks

4.1 Theoretical Analyses and Results

4.1.1 Introduction

We have investigated the links between statistical kernel density estimation and the recently
proposed local basis function neural networks. This work was motivated by a practical
problem: can one build a classifier which can not only discriminate between the classes on
which it was trained, but also detect and reject data from "other" novel classes? This is a
particularly important problem in applications such as medical diagnosis and fault diagnosis
in complex systems, where the available training data may only consist of normal data with
perhaps a few abnormal or fault classes, but certainly nothing like an exhaustive list of all
possible classes.

4.1.2 Results

A variety of 'ad hoc' solutions to the novel class problem have been proposed in the past.
However, a more principled approach is to formulate the problem in terms of Bayes' rule.
From this vantage point, it is easy to show that, in general, generative models (which model
the probability densities of the features conditioned on the classes) can identify novel classes,
while discriminative models (which model the densities of the classes conditioned on the
features) can not detect novel classes [9]. A good example of the latter is a feedforward
network with a single hidden layer of sigmoidal units. As shown in the previous section,
under the appropriate assumptions and with the appropriate loss function, the outputs of
this network will tend to converge to the posterior class probabilities. However, if data from
a novel class is presented at the input to the network, it is highly likely that it will respond
with a strong activation (near 1) for one of the outputs and 0 for the others. Hence, the
user would be completely unaware of the presence of novel data, a potentially dangerous
situation in practice. The basic problem lies with the non-local nature of the representation
being used in the model and the difficulties in extrapolation with such non-local models.
In contrast, local basis functions offer the ability to detect changes in the input data, and,
hence, in principle, offer a much broader basis for on-line learning algorithm.

There has been much recent work in applied statistics on non-parametric kernel density
estimation and we have shown how some of this work can be profitably applied to develop-
ing local basis function models [9] (the equivalence between kernel models and local basis
function networks has been well-known for some time). The difficulties in applying local
basis function methods include the necessity for a well-defined metric in the feature space,
choosing appropriate basis function widths, and sparsity of data in high dimensions. In our
experimental work we have found that provided a reasonable metric exists (i.e., that the
concept of feature-scale is well-defined), the problem of choosing appropriate widths can
be solved relatively well and generative models (which are competitive with discriminative
models in terms of discrimination ability) can readily be learned for most classification
problems. In addition, basic results s not nearly so important as the width - this has use-
ful consequences for -practical implementation, since kernel functions can be chosen simply
based on how easy they are to compute in software or to generate in hardware.
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4.1.3 Future Work

The simple kernel-based generative models are not sufficiently powerful on their own to
solve many difficult learning problems. Hybrid models which use both discriminative and
generative components provide an interesting avenue for further exploration. In addition,
given the well-known deterioration in kernel performance as dimensionality increases, tech-
niques which can reduce the effective dimensionality of the original feature space are of
direct interest. In conclusion, it may be conjectured that the trend in building useful clas-
sification systems will be towards models which have, at least as a component, a local
memory-intensive representation - our work so far has shown that such a representation
is a necessary component in a learning system in order to model interesting and realis-
tic learning behaviour and that the local representation can provide useful discrimination
capabilities compared with more standard alternatives.

4.2 Applications of Density Networks and Hidden Markov Models to
Fault Diagnosis

4.2.1 Introduction

The original motivation for our work on generative local basis function models came from
a real-world fault diagnosis problem. As part of NASA's Deep Space Communications
network, the Jet Propulsion Laboratory operates 70-meter fully steerable ground antennas
in California, Spain and Australia to provide 24-hour radio communication capability with
various inter-planetary spacecraft. These large antennas are potential single-points of failure
in the network and are over 20 years old. A fault detection system monitors the antenna
pointing system in real-time and uses on-line sensor data such as motor currents, wind
velocity, tachometer readings, and so forth, to classify the antenna state into normal and
fault classes. There is significant motivation to be able to detect novel classes - from
an operational point of view there is little tolerance for any detection system that might
mistakenly classify a possibly catastrophic new fault as normal simply because it is on the
same side of a decision boundary as the normal features.

4.2.2 Results and Significance

We have developed a hybrid signal processing/neural network/Hidden Markov model (HM-
M) for this problem which has proven very successful and has been described in detail in [5,
22, 24, 27] - this work has been co-funded by NASA since 1991. Figure 3 shows the pos-
terior probability of the condition "normal" (as a function of time, and with ground truth
being "normal") for the neural density model both with and without the HMM component:
the non-HMM model is quite unreliable whereas the neural/HMM combination shows much
better resistance to false alarms.

The key components which have made the difference between the model being just an
interesting laboratory demonstration and a real-world application are:

1. The use of a coherent probabilistic model throughout, enabling the direct integration
of the neural component with the other models.

2. Generative local basis function models to enable detection of non-normal, non-predicted
behaviour.
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Figure 3: Effect of Combining Neural Network and HMM model

3. Hidden Markov models to reduce the false alarm rate without lowering the detection
capability of the system - the HMM method has been adapted from other DARPA-
sponsored work on neural/HMM models for speech recognition.

The general HMM monitoring model appears to be a significant practical advance over other
techniques currently in practical use for on-line monitoring of dynamic systems. There is
significant potential for the application of this general method to monitoring problems in
medical health care, industrial plants, nuclear power industry, and similar problems where
on-line health monitoring of critical systems is important.
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5 Application of Rule-based Networks to Texture Modeling

5.1 General Goals

In this research we have developed a hybrid texture analysis system that incorporates the
advantages of learning paradigms (including statistical machine learning, knowledge-based
systems and neural networks) in the context of multi-resolution feature extraction tech-
niques. The main goal of the system is to learn a minimal representation for a given library
of textures, based on which one can successfully classify and segment new mosaic test im-
ages into homogeneous textured regions. Of particular interest is to apply the system to
noisy images arising in real-world computer-vision problems.

5.2 Background

Visual texture is one of the most fundamental properties of a visible surface. As such it
takes part in lower-level to higher-level t-iks, from scene segmentation to object recognition.
Texture-analysis methods can be utilized in a variety of application domains, such as remote
sensing, automated inspection, medical image processing and advanced image-compression
schemes. The different textures in an image are usually very apparent to a human observer
but no good mathematical definition can capture the very diverse texture family. It is this
lack of definition that makes automatic description or recognition of these patterns a very
complex and as yet an unsolved problem.

Much effort has been expended to automatically segment and recognize different types of
texture. Although researchers approach texture differently, most would agree that the tex-
ture family can be categorized into two main categories - structured and unstructured, more
stochastic textures. Methods that can handle the more structured textures use structural
models of texture which assume that textures are composed of texture primitives. The tex-
ture is produced by the placement of these primitives according to certain placement rules.
One needs to be able to define a priori a good set of primitives and placement rules (a tree
grammar is commonly used) in order to characterize the textured input. This approach can
handle very regular patterns. Stochastic models, such as the Markov Random Field (MRF)
models, are used as methods to handle unstructured or stochastic textures. Here the image
is seen as an instance of a random process, defined via the model parameters. The model
parameters need to be estimated in order to define adequately the perceived qualities of the
texture. Synthetic textures can then be generated and compared to the original images.
This model-based technique can capture certain textures very well but they fail with the
more regular textures as well as inhomogeneous ones.

Although texture analysis has been a subject of intense study by many researchers, it
is as yet an open challenge to achieve a high percentage classification rate on all the above
textures within one framework. In this work we demonstrate the application of a learning
system to the texture-analysis task [7, 11, 13, 16, 23, 30]. In this approach, the important
characteristics of the input domain are learned from examples, rather than specified a priori
via model-based schemes such as the structural or stochastic models mentioned above.

5.3 System Characteristics

The main features of the system are the following:
- A multi-resolution pyramidal approach is used as a computationally efficient feature-
extraction scheme.
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- The important characteristics of the input domain are learned from examples.
- Both unsupervised and supervised learning are utilized [16].
- An information theoretic technique enables the characterization of the most informative
correlations between the input features and the texture class specification [13].
- These learned correlations are specified as discrimination rules which are available to the
user and can enhance his or her knowledge of the input domain and the classification task
at hand [23].
- The learned rules can be mapped onto a rule-based neural network and thus the clas-
sification scheme is parallelizable and suitable for implementation using special purpose
neural-network hardware [1].
- The rule-based network provides probability estimates for the output classes rather than
just a hard-decision label as its output. These probability estimates can be used for higher-
level analysis, such as feedback for smoothing and the learning of an unknown class, the so
called "pattern discovery" problem.

The system consists of three major stages. The first stage performs feature extraction
and transforms the image space into an array of 15-dimensional feature vectors, each vector
corresponding to a local window in the original image. We define an initial set of 15 filters
and achieve a computationally efficient filtering scheme via the multi-resolution pyramidal
approach. The learning mechanism shown next derives a minimal subset of the above
filters which conveys sufficient information about the visual input for its differentiation and
labeling. We reduce the feature space both in the unsupervised and supervised stages of
analysis. In the unsupervised stage a vector quantization algorithm is used to cluster the
continuous-valued input features. The supervised learning stage follows in which labeling
of the input domain is achieved using a rule-based network. Here an information theoretic
measure is utilized to find the most informative correlations between the attributes and
the pattern class specification, while providing probability estimates for the output classes.
Ultimately, a minimal representation for a library of patterns is learned in a training mode,
following which the classification of new patterns is achieved. For a detailed description of
the system see [7].

5.4 Simulation Results

The system was tested on both structured and unstructured natural textures, taken from
the Brodatz library of natural textures. Experimental results on and Landsat images are
also described.

An example of a five-class natural texture classification is shown in Figure 4. The
mosaic is comprised of grass, raffia, herringbone weave, wood and wool (center square)
textures. The input mosaic is presented (top left), followed by the labeled output map (top
right) and the corresponding probability maps for a prelearned library of six textures (grass,
raffia, wood, sand, herringbone weave and wool, left to right, top to bottom, respectively).
The input poses a very difficult task which is challenging even to humans. Based on the
probability maps (with white indicating probability closer to 1) the very satisfying result
of the labeled output map is achieved. The five different regions have been identified and
labeled correctly (in different shades of gray) with the boundaries between the regions very
strongly evident. It is worth noting that the probabilistic approach enables the analysis of
both structured textures (such as the wood, raffia and herringbone weave) and unstructured
textures (such as the grass and wool).

Our most recent results pertain to the application of the system to the noisy environment
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of satellite and airborne imagery. An example of these images is presented in Fig. 5 (top
to bottom, respectively). The Landsat input is an AVIRIS image of Pasadena, California.
Here, the resolution is 20 meters per pixel. From this example image we can see that a major
distinguishing characteristic is urban area vs. hilly surround. These are the two categories
we intended to learn. The training set consists of a 128*128 image sample for each category.
The test input is a 512*512 image which is very noisy, and because of its low resolution,
very difficult to segment precisely into the two categories, even to our own perception. In
the presented output (top right), the urban area is labeled in white, the hillside in gray, and
unknown, undetermined areas are in darker gray. We see that a rough segmentation into
the desired regions has been achieved. The probabilistic network managed to generalize
in a noisy environment. The network's output allows for the identification of unknown,
unspecified regions, in which more elaborate analysis can be pursued. The dark gray areas
correspond to such regions; an example of which are the suburbs on the hill slopes (bottom
right) which contair, mixtures of the classes. An example of airborne image analysis is
presented at the bottom of Fig. 5. The input image (left) is of much higher resolution
and here it is evident that segmentation based on texture is of importance. Intensity-based
segmentation, for example, would have difficulties with the shadows present around the
bush areas. The classes learned are bush (output label dark gray), ground (output label
gray) and a structured area, such as a field or the man-made structures (white). Here, the
training was done on 128*128 image examples (one example per class). The input image is
800*800. In the result shown (right) we see that the three classes have been found and a
rough segmentation into the three regions is achieved. Note in particular the detection of
the three main structured areas in the image, including the man-made field, indicated in
white. These results demonstrate the network's capability of generalization and robustness
to noise in two complex real-world images.

5.5 Conclusions and Future Applications

We have demonstrated the capability of the system to achieve high-classification rates for
both structured and unstructured textures. The main advantages of the learning approach
are the ability to handle all types of textures within one framework, and to produce probabil-
ity estimates for the output classes. A minimal feature set is learned and the classification
rules are available for the user's information. The system can thus enhance the user's
knowledge of the input domain via its own extracted rule krowledge base. Note that a
segmentation of the image is achieved via the recognition process.

It is of interest to pursue the application of the system to natural-scenery analysis,
such as the Landsat images. Other applications, such as autonomous navigation, can also
benefit from this texture recognition and segmentation system. In such applications, tex-
ture can help in the characterization of the scenery (bush vs. gravel etc.), together with
other modalities, such as stereo, color etc. The fusion of this system with other sources
of information, within a probabilistic framework, is a challenging future goal. Very recent
experiments indicate that the system can achieve scale and rotation-invariant recognition.
We are currently pursuing this goal further.
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Figure 4: Five class natural texture classification. Input mosaic is presented (top left). followed
by the labeled output map (top right) and probability maps
(bottom). The probability maps correspond to a 6 - texture prelearned library.

comprised of the (from top to bottom, left to right) grass. raffia, wood. sand. herringbone weave
and wool textures. White areas indicate high probability. In the label map the
different grey levels correspond to the .5 classes identified.
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Figure .5: Landsat and Aerial image analysis results (top to bottom, respectively). The input
test image is shown (left) folowed by the system output classification map (right). In the
Landsat output. white indicates urban regions. grayv i-s a hilly area and dark gray reflects
undetermined or different region types. In the Airborne output. dark gray indicates a bush area.
light gray is a ground cover region and white indicates man-made structures. Both robustness to
noise and generalization are demonstrated in these two challenging real-world problems.
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6 Temporal Pattern Recognition Models

6.1 Sparse Markov Models

Motivated by our work both on rule-based models and model complexity, we conjectured
that the standard approach of using a kth-order Markov model, where k is fixed (typi-
cally I or 2), in problems such as word recognition and image texture modelling, involves
an unnecessarily large number of parameters. Based on the results in [4,19] one needs an
inordinate amount of data in order to train such models and the number of parameters
scales exponentially as a function of k. For problems where there are many states (such
as word transition models in language modelling) the problem is particularly severe. Fully-
parametrised variable-based models are over-complex compared with event-based models.
In the context of Markov models this leads to a sparse representation for the model struc-
ture. High-order terms are represented by probabilistic rules up to arbitrary order, but the
majority of the higher-order terms are not specified explicitly in the model. We applied this
modelling technique to n-gram prediction for English text and were able to discover a very
parsimonious set of rules [12]. Iii addition we showed how the model could be implemented
in parallel on a network architecture both as a conventional feedforward network and as a
pulse-firing network.

6.2 Se!f-Clustering Recurrent Networks

6.2.1 General Goals

Recurrent neural networks have recently been proposed and studied as a more powerful tool
than straight feedforward neural networks for learning problems where information from the
past is essential. However, there is little established theory for recurrent networks and their
behavior can be very much unpredictable.

The focus of this work is to study in detail how a recurrent network could learn regular
grammars. The purpose is to obtain a better understanding of recurrent neural networks,
their behavior in learning, and their internal representations, which in turn may give us
more insight into their capability for fulfilling other more complicated tasks, such as learning
probabilistic grammars and time sequence predictions.

6.2.2 Problem Statement

A recurrent network is like a layered feedforword network but with feedback connections
from higher layers to lower layers. In using recurrent networks to learn regular grammars
(regular grammars are the simplest type of grammar in the Chomsky hierarchy and have
a one-to-one correspondence to finite state machines), we define our problem as follows:
The recurrent network is given a training set during learning. A training set consists of
randomly chosen variable length strings with length uniformly distributed between I and
Lmnax, where L.,, is the maximum training string length. Each string is marked as "legal"
or "illegal" according to the underlying grammar. The purpose is to train the network by
looking at these labeled strings to behave like a finite state automaton that accepts the
underlying grammar.
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6.2.3 Background

Giles et al. have proposed a "2nd order" recurrent network structure to learn regular
languages'. Our independent experiments have confirmed their results that 2nd order nets
can learn various grammars well. However, a stability problem emerges with trained net-
works as longer and longer input strings are presented. The stability problem led us to
look deeper into the internal representation of states in such a network and found that the
network attempts to form clusters in activation space as its internal renresentation of states.
However, these learned states become unstable as longer and longer strings are presented
to the network.

To solve the stability problem we have developed a discretized combined network struc-
ture, as well as a pseudo gradient learning method, which can be shown to successfully learn
stable state representations [6]. In the proposed network, instead of clusters, the states of
the network are actually isolated points in hidden unit activation space.

6.2.4 Discretized Network Structures

During the learning procedure (which is a gradient descent method in weight space to
miniiixze the mean squared error "or each training string) we recorded the hidden unit
activations at every time step of every training string in different training epochs. The
following behavior was observed: during learning, the network attempts to form clusters in
hidden unit space as its representation of states. Once formed, the clusters are stable for
short strings, i.e., strings with length not much longer than Lmo.z. However, as longer and
longer strings are presented to the network, the percentage of strings correctly classified
drops substantially. The well-separated clusters formed during training begin to merge
together for longer and longer strings and eventually become indistinguishable. The problem
can be considered as inherent to the structure of the network where it uses analog values
to represent states, while the states in the underlying state machine are actually discrete.

We have developed a new method to force the network to learn stable states by intro-
ducing discretization into the feedback connections. A pseudo gradient algorithm is used to
perform training. The algorithm uses the gradient of the soft sigmoid function (the pseudo
gradient) as a replacement of the gradient of the hard-limiting function (which is zero al-
most everywhere), and thus provides a heuristic hint as to which direction and how close a
step down or step up would be.

6.2.5 Summary of Experimental Results

For networks without discretization in the feedback path we found that they can success-
fully learn various grammars (2-10 states), with a small number of hidden units (4-5) and
in less than 1000 epochs. But almost all the learned networks have problems with stabil-
ity as described above. For networks with discretization added, and with the use of the
pse,'do gradient method, the learning performance is similar to that of the models without
discretization, without the stability problems, i.e., classification rates are always 100% no
matter how long the test strings are. In the discretized network, after learning, each point
in the discretized activation space is automatically defined as a state. The transition rules
are calculated as before, and an internal state machine in the network is thus constructed.
In this manner, the network can be said to perform "self-clustering."

1 C. L. Giles et al., 'Grammatical inference using second-order recurrent neural networks,' Proceedings of
the Internationol Joint Conference on Neural Networks, pp.273-281, Seattle, Washington, 1991.
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7 Hybrid Fuzzy Rule-based Networks

7.1 General Goals

The unifying theme of this work has been to develop the application of fuzzy rule-based
neural networks to function approximation from example data. This involves learning the
rules to describe the data, and then building a neural network with the rules to predict
the data. The rules are learned via information theory directly from the data. Rather
than constructing a large network and altering the weights by a delta rule, we construct a
network directly from the learned rules.

7.2 Problem Statement

The problem of function approximation is that of learning to predict a numerical output
variable from a number of numerical input variables. The system is again given examples
of the input and the corresponding output, but must construct a numerical model of the
system in order to smoothly respond to any numerical input. It is our aim to apply this
function approximator to learning neural-based control systems.

7.3 Background

Function approximation may be approached either by using a mathematical model of the
system to be learned (the classical approach), or by using so-called "model-free" systems
such as neural networks and fuzzy systems. Model-based systems can be extremely tedious
for complex problems and require a fresh start on every new problem. Model-free systems,
however, are applicable to a wide variety of approximation problems and require no spe-
cial modifications. In neural networks, there are a number of well-known techniques for
approximation, including radial basis functions and backpropagation. However, in neural
network-based systems, once training is complete the function learned can be observed only
through the input/output relationship. This drawback has led to widespread interest in
the industry in fuzzy systems. A fuzzy system's learned function is expressed in terms of
explicit rules, which can be observed and directly modified if unsatisfactory. While methods
for fuzzy function approximation are not so well developed as those for neural networks,
there are several distinct approaches, including clustering approaches to learning rules and
back-propagation of membership functions and rules. The clustering approach requires the
user to set up membership functions by hand. The backpropagation approach is very slow
to converge and requires the user to set up the number of rules before training. In con-
trast, our method requires the user only to state the number of membership functions - the
membership functions themselves and the rules are learned without human intervention. In
addition, the entire learning process is based upon an algorithm which must terminate in a
rather small number of steps, not depending on mathematical error convergence.

7.4 Summary of results

We have shown that our fuzzy function approximator is capable of learning a control function
from example data without human intervention, and then using that function to reproduce
control performance. We have done this for a complex problem in simulation (the truck
backer-upper), the well-known pole-balancing problem (simulated), and a simpler problem
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in real-time (cruise controller). In both cases, a network is built directly from the rules and
membership functions. These results are described in detail in [8].

As an example, we summarize our results for the truck backer-upper problem. Jenkins
and Yuhas 2 have developed by hand a very efficient neural network for solving the problem
of backing up a truck and trailer to a loading dock. Its trajectory is nearly optimal by most
criteria- RMS docking error, smoothness of path, energy cost in turning the truck, and so
forth. We have chosen this system as a function to approximate because it is highly nonlinear
and its features are non-parallel to the axes; this makes a more challenging approximation
problem for our system.

The function approximator system was trained on 225 example runs of the Yuhas con-
troller, with initial positions distributed symmetrically about the field in which the truck
operates. While the learned fuzzy system with 5 truck angle membership functions actually
performs better in RMS docking error than the original Yuhas network, its path is some-
times not as smooth. The fuzzy truck backer-upper has "modes" of operation: the truck
will first turn around, then back up in a straight line at a diagonal angle, then change di-
rection sharply and back towards the loading dock. This is directly related to the piecewise
approximation to the original function.

7.5 Applications

Given a function approximator, it is possible to learn the inverse of plant - that is, given
the last state and the current state, to predict what the input was. Once this is accom-
plished, the current state and the desired state can be fed into the system to output the
correct control signal. This method, known as direct inverse control, will be an important
application of our system to unsupervised control.

Adaptation of a learned control system to changes in plant parameters is essential in a
real control system. We are researching how to modify the rule weights and membership
functions in response to a performance measure.

We currently have in the lab a helicopter which we intend to do control experiments on.
Controlling even a hover of a helicopter requires multi-input linked multi-output control.
Since we have at this time only dealt with single-output systems, this presents a new
challenge for future work.

2'A simplified neural-network solution through problem decomposition' preprint, 1992.
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8 VLSI Implementation of Probabilistic Neural Networks

We are actively pursuing hardware implementations in VLSI of several of the ideas described
above. Given that we have s:gnificant VLSI expertise and facilities within the group (Profes-
sor Goodman and his graduate students have successfully been fabricating signal processing
and communications chips for several years), we can readily test whether or not a particular
algorithm or technique is suited for direct implementation as a special-purpose VLSI chip.

8.1 Pseudo K-Means Clustering In Analog VLSI

8.1.1 Introduction

We have developed an analog VLSI system which adaptively clusters data using a modified
K-means algorithm to act as either a pre-processor or post-processor for a neural network-
based system. The clustering algorithm implemented is a variant of the traditional K-
means algorithm optimized for realization in silicon. The algorithm offers the advantage
of a fast unsupervised method for reducing data complexity. We have successfully verified
this approach with both computer simulations and with a chip that has been fabricated and
tested.

8.1.2 Motivation

The K-means algorithm is a traditional pattern classification algorithm that does data
analysis based on a simple centroid-based method of clustering data. Our goal with this
architecture is to augment learning systems by adding information about the clustering
of data. Clustering can be applied to the outputs of a heterogeneous neural network to
allow better discrimination of the classification information from the previous layers. The
data storage reduction achieved by the K-means clustering algorithm can be large for well-
behaved data because only the cluster centers and the number of points in each one need
to be stored to entirely specify the clustering.

8.1.3 Modifications to the Standard K-means Algorithm

The K-means algorithm starts out by defining K clusters, each defined by its centroid:
Cj 1 <j _ K. In an iteration of the algorithm, the data is individually grouped into one
of the clusters based on the closeness of the data to a particular centroid in some metric
(typically euclidean distance or the city-block distance).

In order to feasibly implement the algorithm in analog VLSI, we have modified the
algorithm somewhat. The first change is that in order to terminate the learning phase of
the algorithm, we calculate how far the cluster centers have moved since the last iteration.
If they have all moved below some user-settable threshold, we are finished with the cluster-
movement part of the algorithm. The second change to the algorithm is that new clusters
can be started during training whereas in the original algorithm, the number of clusters is
specified a-priori.

The third change is probably the most important from the view of hardware imple-
mentation. Since we cannot easily afford to store all the data points associated with each
cl,' '.-r in the generically available VLSI technology (e.g. 2prm double metal CMOS through
MUi§'i). But we know that as the number of points in the cluster increase, the effect of
any one point will proportionally decrease. Therefore, we have an architecture whereby we
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keep track of the number of points that have been assigned to the cluster in question and
use this value to weight the effect of new points assigned to the cluster. This is easy to do
in analog VLSI, and the behavior will mimic that of the original algorithm for new points
added to the cluster.

The following equation describes what we would like to achieve with our modification:

i=P
C?= x b e-aN where a, b are constants (16)

i=1

We achieve this functional relationship by using the exponential current from voltage
relationship in a weak-inversion biased MOS transistor. If we can linearly change the gate
voltage (V,) of a MOS transistor, then according to the following equation, we get an
exponential change in the drain current Id:

Id = I. "- e: t, Ut - 26 mV -- 0.7 (17)

Hence, by storing the number of points assigned in a linear fashion and using this value to
bias a MOS transistor's gate in weak inversion, we can use the current through the transistor
to perform the exponential weighting.

8.1.4 Test Results

We have designed, fabricated, and tested a proof of concept VLSI clustering chip. The chip
clusters data into two clusters and operates on two dimensional data. Because of the simple
design the testing was constrained to ensure that the capacitor voltage did not change
significantly during operation as to permit other parts of the chip to compute correctly.
Test results have validated the ability of the distance (bump) circuit to produce an output
which allows good discrimination of different inputs. We have found that the constant part
of the input varies over approximately 3.2 volts on common mode input for different values
of the bias voltage (which determines the scaling factor for each dimension). The test results
have also shown that the chip is capable of clustering as designed. even with the addition
of small amount of noise (< 150mv).

8.1.5 Conclusion

We have developed and implemented a VLSI system that implements a K-means type
clustering algorithm. From both simulations and the actual chip testing, we are confident
that a more powerful clustering chip is quite feasible and are currently designing such a
chip.

8.2 A Hebbian Learning Chip

8.2.1 Introduction and Design

The goal of this work is to recreate realistic dynamics of Hebbian learning in VLSI using
switched capacitor circuits for delayed dendritic connections and synapses. Neural activ-
ity in this architecture is frequency-coded. Inhibition is allowed, but there is no negative
activity. In the architecture all outputs initially receive uncorrelated noise. All weights
are initialized to zero; they are neither inhibitory nor excitatory. As input neurons receive
training vectors, correlations resulting from random circuit mismatches and input-output
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synchronization due to noise lead to the updating of synapses. Synapses connecting corre-
lated input-output pairs gain charge, moving towards positive excitatory weights. Synapses
connecting input-output pairs with negative correlation lose charge, moving towards nega-
tive inhibitory weights. The uncorrelated noise that the output neurons initially receive is
thus essential in pairing an input cluster with an output neuron. While output neurons in-
hibit one another, input vectors are expected to be clustered into separate sets, the number
of which is determined by the number of mutually inhibiting sets of output neurons.

8.2.2 A Description of Network Dynamics

As the network dynamics evolve, an input neuron must control its output in proportion to
both its oscillation frequency and the the strength of the connecting synapse. All output
neurons ought to receive noise. This implies that there must exist a background random
activity associated with uncommitted output neurons. Such noise could be generated by
averaging linear-feedback shift register outputs. These activities between output neurons
must be uncorrelated. As synapses strengthen and settle into their final values, this noise
will become quite negligible. Consequently, following the learning process, any output
neuron activity is almost exclusively controlled by its inputs and the strength of the con-
necting synapses. For most unsupervised learning schemes and self-organizing networks
in particular, the process of synaptic update is guided in part by the interaction between
the neurons of the output layer. In our implementation, the interaction in the form of
lateral inhibition is controllable by the use of the dendritic delay element between neural
oscillations and inhibitory input. This implies that higher frequency oscillations cause more
effective inhibition. A possible way of implementing neighbor-excitation would be to supply
correlated noise to neighboring neurons as well as electrically coupling them.

8.2.3 Results and Future Applications

A chip incorporating the building blocks of the architecture (specifically the input neuron,
dendrite, synapse and output neuron) has been designed, fabricated and successfully tested.
We envision that this architecture can be used in applications where the whole system needs
to reconfigure itself in real time based on incoming sensory data.

8.3 A Digital Neural Network Using Random Pulse Trains

8.3.1 Introduction and Network Architecture

The motivation is to implement a pulse-train feed-forward neural network using very little
chip area and only digital VLSI technology. We have focused on the multiplication com-
ponent of a general pulse network architecture. The circuit consists of a digital delay line
to simulate the phase shifted weight and input activity level representations. The input to
the delay line is provided from a pulse width modulator that is driven by an analog input
value. This particular method of mixing analog and digital techniques was chosen to test
this multiplexing scheme over a continuous range of values. The random bit streams are
generated by a shift register sequence, based on irreducible polynomials. This is done to
obtain the pseudorandom bit sequence with the longest possible period. The bit streams
are used to select between the four phase shifted versions of the sculpturing weight and the
input. These signals are AND'ed with each other, and the result gets time averaged using
a simple RC circuit.
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The AND multiplication component has been tested both with one multiplicand fixed
and both multiplicands equal. In both of these cases the chip has performed in a robust
manner over frequency ratios ranging from 0.1 to 10. This has been demonstrated by
time averaging the pulse trains through an RC filter with a fixed time constant (0.1 sec.).
The frequency of activity levels are adjusted by changing the ratio of frequencies between
the triangular wave generating the pulse-width-modulated representation and the clock
generating the uncorrelated bit sequences which multiplex between them In the proposed
digital architecture, this would correspond to the frequency ratio between the clock recycling
the partial weight representations and the clock generating the uncorrelated bit sequences.

8.3.2 Results and Future Applications

The above design has been fabricated and successfully tested - details are reported on in
[26]. The architecture described above could be used as a stackable fully-interconnected
feed-forward neural network. An additional advantage is that the synaptic accuracy is con-
trollable which has potential advantages for implementing stochastic learning algorithms.
We are currently investigating the mapping of our rule-based learning algorithms and net-
works (described earlier) to this hardware architecture for fast parallel implementation.
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